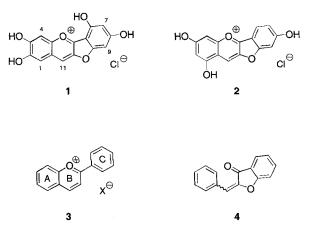
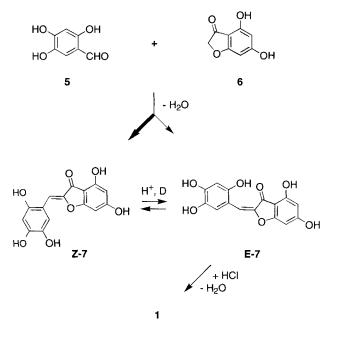
Synthesis of 2,3,6,8-Tetrahydroxybenzofuro[3,2-*b*][1]benzopyrylium Chloride (*Riccionidin A*)

Gerald Dyker and Michael Bauer

Duisburg, Institut für Synthesechemie der Gerhard-Mercator-Universität


Received September 22nd, 1997, respectively January 8th, 1998

Abstract. The liverwort pigment riccionidin A (1) was synthesized in a single preparative step from simple starting


materials by a double condensation reaction.

Riccionidin A (1) is a red to violet cell wall pigment found in the liverworts *Ricciocarpos natans, Marchantia polymorpha, Riccia duplex* and *Scapania undulata*. Its structure was elucidated in 1994 by Becker *et al.* [1] by analyzing 20 mg of the purified compound isolated from 550 g freeze-dried plant material.

1 is related to a few other naturally occuring anthocyanidins [2] such as morinidin chloride (2) [3] which have an oxygen bridge connecting the B- and the C-ring and giving rise to a benzofuran moiety. Thus, this type of pyrylium salts combines structural features of two important subclasses of flavonoids: the typical aryl substituted benzopyrylium unit of the anthocyanidins **3** [2] and the benzofuran moiety of the aurons **4** [4]. With hydroxy substituents in positions 2, 3, 6 and 8 *riccionidin A* (1) exhibits a unique substitution pattern. In all other naturally occuring benzofuro[3,2-b][1]benzopyrylium salts known so far the hydroxy and methoxy substituents are located in positions 1, 3 and 8. The synthesis of **1** prones the reported structure, and at the same time provides starting material for the synthesis of *riccionidin B* [1], a natural product

whose actual constitution is unknown but is believed to derive from an oxidative dimerization of *riccionidin A* (1).

A one-step synthesis starting from the simple precursors **5** [5] and **6** [6] under acidic conditions at moderate temperature was envisioned in analogy to the formation of similar pyrylium salts [7]. However, after 3 h at 50 °C in acetic acid saturated with hydrogen chloride only trace amounts of **1** were detected. Instead, the auron **Z**-**7** was isolated as the main product identified by comparison of its NMR spectra with reported data of aureusidin **Z**-**8** [8] (Table 2), a very similar natural product lacking the hydroxyl group in 2'-position [9].

Tab. 1 Synthesis of **Z-7** and **1** from **5** and **6**; optimization of the reaction conditions: acetic acid as solvent, 1-5 h saturation with gaseous HCl (t_{HCl}), 1-125 h overall reaction time ($t_{overall}$); determination of product ratio by ¹H NMR spectroscopy

			-		L 19
entry	T	t _{HCI}	t _{overall}	yield (%)	product ratio Z-7 : 1
1	25 °C	2 h	74 h	74	100: 0
2	50 °C	3 h	20 h	91	80:20
3	80 °C	3 h	3 h	89	73:27
4	100 °C	3 h	20 h	99	21:79
5	100 °C	5 h	125 h	91	5:95
6	110 °C	1 h	1 h	75	54:46

Tab. 2 Comparison of NMR spectroscopic data (ppm) of the aurons **Z-7** and **Z-8** (DMSO-d₆);

C/H	$\delta_{ m C}$ of Z-7	$\delta_{\! m C}$ of Z-8	$\delta_{ m H}$ of Z-7	$\delta_{\! m H}$ of ${f Z} extsf{-8}$
α	103.3	109.6	6.40	6.47
2	145.1	145.9		
3	179.2	179.1		
4	166.8	167.0		
5	97.6	97.7	6.05	6.09
6	167.4	167.5		
7	90.4	90.3	6.16	6.20
8	158.1	158.2		
9	95.7	102.9		
1'	109.8	123.7		
2'	138.7 ^a)	123.9		7.18
3'	104.4	117.6	6.86	6.83
4'	149.2 a)	147.4		
5'	151.8 a)	145.5		
6'	116.5	115.9	7.48	7.41

^a): assignment of the signals interchangeable

A prolonged reaction time at 50 °C led to an increase of the proportion of 1 (20% after 20 h, table 1, entry 2). Presumably, the *cis-trans* isomerization of **Z-7** to **E-7** initialized by protonation of the carbonyl group is the rate determining step: the hydroxyl groups at the benzofuranone nucleus interact with the carbonyl group *via* conjugation, ultimately increasing the isomerization barrier at the central olefinic bond, since the conjugation with the trihydroxyphenyl substituent becomes less important. Thus, higher temperatures as usual [7] are required for the *cis-trans*-isomerization: under optimized conditions (125 h at 100 °C, entry 5) an excellent yield of 1 is obtained. Obviously, **E-7** is rapidly transformed to *riccionidin* A (1) *via* intramolecular condensation and could not be detected in the reaction mixture.

The spectral data of synthetic *riccionidin A* (1) were compared with reported spectroscopic data (Table 3) [1a]. Some minor deviations (less than 0.3 ppm in the case of the ¹³C NMR and less than 0.07 ppm in the case of the ¹H NMR spectrum) are explained by the different solvents used: the data for the natural sample was obtained in DMSO-d₆ with 0.5% DCl/D₂O (1:3), whereas we omitted DCl in order to avoid the H-D-exchange. However, a direct comparison of the IR-spectra and the UV-spectra confirms the identity of the natural and synthetic sample.

Tab. 3 Comparison of NMR spectroscopic data (ppm) of the natural sample of **1** (in 99.5% DMSO- $d_6 + 0.5\%$ DCl/D₂O in the ratio 1:3) with the synthetic sample (in DMSO- d_6); identification of the signals in analogy to lit. [1a];

C/H	$\delta_{ m C}$ of ${f 1}_{ m nat}$	$\delta_{\! m C}{ m of}{f 1}_{ m syn}$	$\delta_{ m H}$ of $1_{ m nat}$	$\delta_{ m H}$ of $1_{ m syn}$
1	112.1	112.0	7.54	7.53
2	147.9 ^a)	147.9 ^a)		10.83 (OH)
3	155.6 ^a)	155.8 ^{a)}		10.83 (OH)
4	103.1	103.3	7.64	7.58
4a	149.2	149.4		
5a	144.0 ^a)	144.3 ^a)		
5b	99.7 [´]	99.8		
6	157.9 ^a)	157.9 a)		12.51 (OH)
7	99.8 ^b)	100.0 ^b)	6.69 °)	6.62 °)
8	170.3 ^a)	170.2 ^a)		12.12 (OH)
9	91.4 ^b)	91.6 ^b)	6.74 °)	6.73 °)
9a	163.4 ^a)	163.6 ^a)		,
10a	156.9 ^a)	157.2 ^a)		
11	127.1	127.0	9.06	9.07
11a	115.7		116.0	

a)-c): assignments may be exchanged

Financial support of the Fonds der Chemischen Industrie and the Dr. Otto Röhm-Gedächtnisstiftung is gratefully acknowledged. We thank Prof. Dr. Hans Becker for helpful suggestions and for supplying an IR and an UV spectrum of the natural sample of *riccionidin A*.

Experimental

All NMR spectra were measured in DMSO-d₆ as solvent (internal standard: ¹H NMR: δ /ppm(DMSO-d₅) = 2.50; ¹³C NMR: δ /ppm DMSO-d₆) = 39.7): Bruker DRX 500. MS: MAT 311A. IR: Perkin Elmer 983. UV: Perkin Elmer 554.

4,6-Dihydroxy-2-[(2,4,5-trihydroxyphenyl)methyliden]-3(2H)-benzofuranone (**Z-7**)

Through a solution of 60.0 mg (0.39 mmol) of 2,4,5trihydroxybenzaldehyde (5) [5] and 65.0 mg (0.39 mmol) of the benzofuranone **6** [6] in 4 ml acetic acid hydrogen chloride is bubbled during 2 h at room temperature. After 72 h additional stirring the precipitate is washed three times with 2 ml of water and dried for 5 h at 100 °C *in vacuo*: 87.0 mg (74%) of **Z-7** as a brownish red powder. – IR (KBr): $v/cm^{-1} = 3500-3020$, 1653, 1619, 1568, 1456, 1381, 1304, 1212, 1187, 1163, 1071. – UV (ethanol): λ_{max} (lg ε)/nm= 210 (4.42), 250 (3.96, sh), 295 (3.87, sh), 330 (4.08), 429 (4.36). $^{-1}$ H NMR (500 MHz): δ /ppm = 6.05 (d, *J* = 1.7 Hz, 1H, 5-H), 6.16 (d, *J* = 1.7 Hz, 1H, 7-H), 6.40 (s, 1H, α -H), 6.86 (s, 1H, 3'-H), 7.48 (s, 1H, 6'-H), 9.53, 10.75 (br, 5 H, 4-OH, 6-OH, 2'-OH, 4'-OH, 5'-OH). $^{-13}$ C NMR (125 MHz): δ /ppm = 90.35 (d, C-7), 95.73 (s, C-9), 97.64 (d, C-5), 103.33 (d, α -C), 104.43 (d, C-3'), 109.84 (s, C-l'), 116.49 (d, C-6'), 138.71 (s, C-2'), 145.12 (s, C-2), 149.22 (s, C-4'), 151.78 (s, C-5'), 158.12 (s, C-8), 166.76 (s, C-4), 167.40 (s, C-6), 179.18 (s, C-3). $^{-1}$ MS (EI, 70 eV): *m/z* (%) = 302 (12) [M+], 300 (5), 285 (6), 176 (37), 166 (21), 153 (21), 150 (39), 148 (16), 137 (12), 126 (100), 108 (14), 97 (9), 80 (28), 69 (30), 53 (27), 44 (72).

```
found: C 54.80 H 3.60.
```

2,3,6,8-Tetrahydroxybenzofuro[3,2-b][1]benzopyrylium chloride (riccionidin A, 1)

Through a solution of 1.0 g (6.5 mmol) of 2,4,5-trihydroxybenzaldehyde (5) [5] and 1.1 g (6.5 mmol) of the benzofuranone 6 [6] in 30 ml acetic acid hydrogen chloride is bubbled during 5 h at 100 °C. After 120 h additional stirring at 100 °C the reaction mixture is cooled to room temperature. The precipitate is washed with 5 ml of acetic acid and dried in vacuum: 1.89 g (91%) crude product consisting of 95% 1 and of 5% Z-7 according to the ¹H NMR spectrum. A pure sample of 1 is obtained by recrystallization from ethanol containing 2% hydrochloric acid. 1 decomposes slowly at 150 °C. – IR (KBr): $v/cm^{-1} = 3500 - 3000, 2920, 2860, 1646, 1625, 1568,$ 1531, 1490, 1437, 1285, 1230, 1186, 1140, 1064. - UV (methanol/HCl [99.5:0.5]): λ_{max} (lg ε)/nm= 210 (4.38), 241 (4.43), 281 (4.00), 332 (3.60), 375 (3.61), 497 (4.46). -¹H NMR (500 MHz): δ /ppm = 6.62 (d, J = 1.5 Hz, 1H, 7-H), 6.73 (d, J = 1.5 Hz, 1H, 9-H), 7.53 (s, 1H, 1-H), 7.58 (s, 1H, 4-H), 9.07 (s, 1H, 11-H), 10.83 (br, 2H), 12.12 (br, 1H), 12.51 (br, 1H). – ¹³C NMR (125 MHz): δ /ppm= 91.63 (d, C-9), 99.84 (s, C-5b), 100.03 (d, C-7), 103.32 (d, C-4), 111.97 (d, C-1), 116.02 (s, C-11a), 126.96 (d, C-11), 144.26 (s, C-5a), 147.92 (s, C-2), 149.42 (s, C-4a), 155.78 (s, C-3), 157.17 (s, C-10a), 157.90 (s, C-6), 163.56 (s, C-9a), 170.17 (s, C-8); identification of the signals in analogy to the lit. [1a]. - MS (EI, 70 eV): m/z (%) = 285 (5), 164 (12), 163 (14), 150 (28), 126 (100), 108 (6), 97 (9), 80 (28), 69 (15), 52 (25), 51 (10), 48 (18), 44 (65).

References

- [1] a) S. Kunz, G. Burkhardt, H. Becker, Phytochem. 1994, 35, 233; b) S. Kunz, H. Becker, Z. Naturforsch. 1995, 50c, 235
- [2] G. A. Iacobucci, J. G. Sweeny, Tetrahedron 1983, 39, 3005
- [3] a) G. Chakravarty, T. R. Seshadri, Indian J. Chem. 1964,
 2, 319; b) H. Appel, R. Robinson, J. Chem. Soc. 1935,
 137, 752
- [4] a) P. K. Agrawal, M. C. Bansal, Aurones, in Carbon-13 NMR of Flavonoids, (Ed.: P. K. Agrawal), Elsevier Verlag, Amsterdam 1989, S.243; b) A. Pelter, R. S. Ward, J. Chem. Soc. Perkin I 1979, 328
- [5] 5 is synthesized in three steps starting from *p*-benzo-quinone: a) H. Gross, A. Rieche, G. Matthey, Chem. Ber. 1963, 96, 308; b) E. B. Vliet, Org. Synth. Col. Vol. I 1946, 317; c) J. Thiele, Ber. Dtsch. Chem. Ges. 1898, 31, 1247
- [6] 6 is synthesized in two steps starting from phloroglucinol and chloroacetonitrile: a) M. Huke, K. Görlitzer, Arch. Pharm. 1969, 302, 423; b) R. L. Shriner, F. Grosser, J. Am. Chem. Soc. 1942, 64, 382; c) A. Sonn, Ber. Dtsch. Chem. Ges. 1917, 50, 1262
- [7] Similar transformations have been achieved at room temperature: a) W. H. Perkin, R. Robinson, M. R. Turner, J. Chem. Soc. 1908, 93,1085; b) L. R. Ridgway, R. Robinson, J. Chem. Soc. 1924, 125, 214; c) A. Axelrod, Über Anthocyane und Anthocyanidine, Dissertation, Diss.-Druckerei Gebr. Leemann & Co., Zürich 1933
- [8] H. Geiger, K. R. Markham, Phytochem. 1992, 31, 4325
- [9] For clarity the labels of the positions **Z-8** follow those of **Z-7**.

Address for correspondence: Prof. Dr. Gerald Dyker Institut für Synthesechemie Fachbereich 6 Gerhard-Mercator-Universität-GH Duisburg Lotharstraße 1 D-47048 Duisburg e-mail: dyker@uni-duisburg.de fax: 49/0203-379-4192

C₁₅H₁₀O₇ (302.24 g/mol) calcd.: C 59.61 H 3.33

 $C_{15}H_{10}O_7 + 1.5 H_2O$: calcd.: C 54.72 H 3.98